Rutgers University: Algebra Written Qualifying Exam August 2014: Problem 5 Solution

Exercise. Let R be a commutative ring with 1 . Let I and J be ideals in R such that for every $x \in R$ there is $y \in I$ such that $x \equiv y(\bmod J)$. Show that for every $x \in R$ there is $z \in I$ such that $x \equiv z\left(\bmod J^{2}\right)$. (Here J^{2} is the ideal generated by all products $r s, r \in J, s \in J$.)

Solution.

Since $1 \in R, \exists y \in I$ such that $1 \equiv y \bmod J$.

$$
\Longrightarrow(1-y) \in J
$$

Then for any $x \in R, \exists v \in I$ s.t. $x \equiv v \bmod J$.

$$
\Longrightarrow(x-v) \in J
$$

So $\exists s, t \in J$ such that

$$
\begin{aligned}
1-y & =x \\
\Longrightarrow 1 & =y+s \\
\Longrightarrow x & =1 \cdot x \\
& =(y+s)(v+t) \\
& =y v+s v+y t+s t \\
& =z+s t
\end{aligned}
$$

and

$$
\begin{aligned}
x-v & =t \\
x & =v+t
\end{aligned}
$$

where

$$
z=y v+s v+y t
$$

Note:	$z \in I$	since	$y, v \in I$
\Longrightarrow	$y v, s v, y t \in I$	since	$r i=i r \in I$ for any $i \in I$ and $r \in R$
\Longrightarrow	$y v+s v+y t \in I$	since	ideals are closed under addition
Also	$s \in J$ and $t \in J$	\Rightarrow	$s t \in J^{2}$
		\longrightarrow	$x=z+s t \equiv z \bmod J^{2}$

Thus, since x was arbitrary,

$$
\forall x \in R, \exists z \in I \text { such that } x \equiv z \bmod J^{2}
$$

