Rutgers University: Algebra Written Qualifying Exam August 2014: Problem 5 Solution

Exercise. Let R be a commutative ring with 1. Let I and J be ideals in R such that for every $x \in R$ there is $y \in I$ such that $x \equiv y \pmod{J}$. Show that for every $x \in R$ there is $z \in I$ such that $x \equiv z \pmod{J^2}$. (Here J^2 is the ideal generated by all products $rs, r \in J, s \in J$.)

Solution.		
Since $1 \in R$, $\exists y \in I$ such that $1 \equiv y \mod J$.		
$\implies (1-y) \in J$		
Then for any $x \in R, \exists v \in I$ s.t. $x \equiv v \mod J$		
$\implies (x - v) \in J$		
So $\exists s, t \in J$ such that		
1-y=x	and	x - v = t
$\implies 1 = y + s$		x = v + t
$\implies x = 1 \cdot x$		
=(y+s)(v+t)		
= yv + sv + yt + st		
= z + st	where	z = uv + sv + ut
Note: $z \in I$	since	$y, v \in I$
$\implies yv, sv, yt \in I$	since	$ri = ir \in I$ for any $i \in I$ and $r \in R$
$\implies yv + sv + yt \in I$	since	ideals are closed under addition
Also $s \in J$ and $t \in J$	\implies	$st \in J^2$
	\Rightarrow	$x = z + st \equiv z \mod J^2$
Thus, since x was arbitrary,		
$\forall x \in R, \exists z \in I \text{such that } x \equiv z \mod J^2$		